Abstract
The model of broken and intact cells was used to fit the experimental data, and it was proved to be able to describe the extraction process of tea seed oil. The extraction rate, observed through the overall extraction curves (OEC), resulted in being faster the higher the pressure whereas the temperature had less influence on the extraction kinetics. The volume mass transfer coefficients in the fluid phase (kfa0) and solid phase (ksas) were used as fitting parameters. The maximum average deviation between measured and calculated oil yield was 4.1%. Mass transfer coefficients in the fluid phase and solid phase varied between 2.40·10−2–2.75·10−2 s−1 and 4.32·10−5–6.90·10−5 s−1, respectively. The outcomes of work showed the highest extraction yield (50.03 ± 0.68% w/w) obtained at 300 bar and 40 °C. Tea seed oil extracted using SC-CO2 presented higher antioxidant capacity and lower UV indices than oil extracted with n-hexane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.