Abstract

A stereogenic center, placed at an exocyclic location next to a chiral carbon in a ring to which it is attached, is a ubiquitous structural motif seen in many bioactive natural products, including di- and triterpenes and steroids. Installation of these centers has been a long-standing problem in organic chemistry. Few classes of compounds illustrate this problem better than serrulatanes and amphilectanes, which carry multiple methyl-bearing exocyclic chiral centers. Nickel-catalyzed asymmetric hydrovinylation (AHV) of vinylarenes and 1,3-dienes such as 1-vinylcycloalkenes provides an exceptionally facile way of introducing these chiral centers. This Article documents our efforts to demonstrate the generality of AHV to access not only the natural products but also their various diastereoisomeric derivatives. Key to success here is the availability of highly tunable phosphoramidite Ni(II) complexes useful for overcoming the inherent selectivity of the chiral intermediates. The yields for hydrovinylation (HV) reactions are excellent, and selectivities are in the range of 92-99% for the desired isomers. Discovery of novel, configurationally fluxional, yet sterically less demanding 2,2'-biphenol-derived phosphoramidite Ni complexes (fully characterized by X-ray) turned out to be critical for success in several HV reactions. We also report a less spectacular yet equally important role of solvents in a metal-ammonia reduction for the installation of a key benzylic chiral center. Starting with simple oxygenated styrene derivatives, we iteratively install the various exocyclic chiral centers present in typical serrulatane [e.g., a (+)- p-benzoquinone natural product, elisabethadione, nor-elisabethadione, helioporin D, a known advanced intermediate for the synthesis of colombiasin and elisapterosin] and amphilectane [e.g., A-F, G-J, and K,L pseudopterosins] derivatives. A concise table showing various synthetic approaches to these molecules is included in the Supporting Information. Our attempts to synthesize a hitherto elusive target, elisabethin A, led to a stereoselective, biomimetic route to pseudopterosin A-F aglycones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.