Abstract
Increased sales of natural products (NPs) in the US and growing safety concerns highlight the need for NP pharmacovigilance. A challenge for NP pharmacovigilance is ambiguity when referring to NPs in spontaneous reporting systems. We used a combination of fuzzy string-matching and a neural network to reduce this ambiguity. Our aim is to increase the capture of reports involving NPs in the US Food and Drug Administration Adverse Event Reporting System (FAERS). For this, we utilized Gestalt pattern-matching (GPM) and Siamese neural network (SM) to identify potential mentions of NPs of interest in 389,386 FAERS reports with unmapped drug names. A team of health professionals refined the candidates identified in the previous step through manual review and annotation. After candidate adjudication, GPM identified 595 unique NP names and SM 504. There was little overlap between candidates identified by each (Non-overlapping: GPM 347, SM 248). We identified a total of 686 novel NP names from FAERS reports. Including these names in the FAERS collection yielded 3,486 additional reports mentioning NPs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.