Abstract

This paper combines negative capacitance (NC) with inductance (L) to enlarge low-frequency bandgap width in locally resonant piezoelectric metamaterials. The studied metamaterials are obtained by directly bonding patches on the surfaces of host structures, then connecting patches to shunts. Shunts with NC and L in series and in parallel are both studied. Analytical expressions of the bandgap ranges are derived, which reveal that the bandgap size is increased not simply because the NC enhancing the material’s electro-mechanical coupling factor, but in a more complicated way. Parametric studies are performed to analytically investigate the tuning properties of the LR bandgap by NC. Results demonstrate that by modifying NC value, the LR bandgap size can be significantly increased. Numerical simulations are done to verify the effects of the broadened bandgap on vibration transmission and reveal the limitations of the used analytical model. Practical implementation of the shunts are also discussed, recommendations on choosing the shunt configurations and NC values are given. This paper gives a theoretical guideline on designing piezoelectric metamaterials with bandgap effects at desired frequency ranges for practical applications like low-frequency vibration and noise reduction or isolation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.