Abstract

In this paper, a theoretical and experimental study of the electric impedance of a piezoelectric plate connected to a negative capacitance is performed in the MHz frequency range. The negative capacitance is realized with a circuit using current conveyors (CCII+). This circuit allows us to achieve important values of negative capacitance, of the same order of the static capacitance of the piezoelectric plate studied. Mason’s model is considered for the theoretical characterization of the piezoelectric plate connected to the negative capacitance circuit. The experimental results show a large tunability of the frequency of the piezoelectric parallel resonance over a range of 1.1 MHz to 1.28 MHz. Moreover, according to the value of the negative capacitance, the effective electromechanical coupling factor of the piezoelectric plate is evaluated. With a very good agreement with the theoretical estimation, an increase of approximately 50% of the effective electromechanical coupling factor is experimentally measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.