Abstract

Abstract Reconfigurable metasurfaces have emerged as a promising alternative to the conventional transmitter of wireless communication systems, due to their abilities of encoding digital information onto electromagnetic properties without complex radio-frequency chains. However, most of them are still limited to narrow operation bandwidth. Here, we propose a broadband metasurface-based wireless communication system that can actively adapt to multiple users located at versatile directions through joint modulation of digital signals in the time domain and wave scatterings in the space domain. As exemplary demonstrations, highly directive beams are generated to enhance regional signals in real-time customized for users in desired directions and reduce the signal leakage in undesired directions. Experiments are carried out to verify that the system can provide stable wireless communication service in a broad band of 3.7–5.1 GHz, within which the transmitted color picture enabled by the time-varying spatial modulation of metasurface can be successfully recovered at the user terminals. The proposed system may offer untapped potentials for next-generation communications and radar systems where regional signal enhancement, active adaption to users, and large channel capacities are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.