Abstract

Low-k dielectric silicon carbonitride (SiCxNy) films are deposited by plasma-enhanced chemical vapor deposition using a carbon-rich silazane precursor, N-methyl-aza-2,2,4-trimethylsilacyclopentane (SiC7NH17), at 100 °C. The post-treatments of SiCxNy films are carried out by thermal annealing and a broadband UV-assisted thermal annealing (UV-annealing) at 400 °C for 5 min. Compared to the thermal annealing treatment, UV-annealing can improve both dielectric and mechanical properties of low-k SiCxNy films. Under thermal annealing, SiCxNy films show great thermal stability, but little structural change. In contrast, upon UV-annealing, most of the Si–H and N–H bonds are broken up, which induces more Si–N cross-linking and converts Si–C matrix into Si–N matrix. The ethylene bridges in Si–(CH2)2–Si also remain intact, but the unbridged hydrocarbons in Si–(CH2)2–N and Si–CH2–CH3 bonds decompose completely during the UV-annealing process. These account for the reduced dielectric constant to k = 3.2 from 3.6 and a 21% enhancement of Young's modulus to 7.4 GPa in the SiCxNy films after UV-annealing. Broadband UV-annealing shows promise as a post-treatment method for enhancing the properties of low-k dielectric barrier, SiCxNy films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.