Abstract

We discuss a fundamentally new approach for the measurement of electric (E) fields that will lead to the development of a broadband, direct SI-traceable, compact, self-calibrating E-field probe (sensor). This approach is based on the interaction of radio frequency (RF) fields with alkali atoms excited to Rydberg states. The RF field causes an energy splitting of the Rydberg states via the Autler-Townes effect and we detect the splitting via electromagnetically induced transparency (EIT). In effect, alkali atoms placed in a vapor cell act like an RF-to-optical transducer, converting an RF E-field strength measurement to an optical frequency measurement. We demonstrate the broadband nature of this approach by showing that one small vapor cell can be used to measure E-field strengths over a wide range of frequencies: 1 GHz to 500 GHz. The technique is validated by comparing experimental data to both numerical simulations and far-field calculations for various frequencies. We also discuss various applications, including: a direct traceable measurement, the ability to measure both weak and strong field strengths, compact form factors of the probe, and sub-wavelength imaging and field mapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.