Abstract
A substantial broadband increase in the external quantum efficiency (EQE) of thin‐film organic photovoltaic (OPV) devices using near‐field coupling to surface plasmons is reported, significantly enhancing absorption at surface plasmon resonance (SPR). The devices tested consist of an archetypal boron subpthalocyanine chloride/fullerene (SubPc/C60) donor/acceptor heterojunction embedded within a planar semitransparent metallic nanocavity. The absorption and EQE are modeled in detail and probed by attenuated total internal reflection spectroscopy with excellent agreement. At SPR, the EQE can be enhanced fourfold relative to normal incidence, due to simulated ninefold enhancement in active layer absorption efficiency. The response at SPR is thickness‐independent, down to a few monolayers, suggesting the ability to excite monolayer‐scale junctions with an EQE of ≈6% and a 16‐fold absorption enhancement over normal incidence. These results potentially impact the future design of plasmonically enhanced thin‐film photovoltaics and photodetectors and enable the direct analysis of the dynamics of photocurrent production at OPV heterojunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.