Abstract

GaAs nanocrystals have been prepared by a mechanical ball milling technique. The optical limiting properties of colloidal ethanol suspensions of these crystals were investigated by use of a nanosecond optical parametric oscillator pumped by a Nd:YAG system. Not only at a wavelength of 1064 nm but also in the 490-670 nm visible region, colloidal GaAs nanocrystals with a concentration of 0.023 mg/mL exhibit strong optical limiting performance, which is better than that of C60 in toluene with the same linear transmittance at a wavelength of 532 nm. Two-photon absorption is regarded as the dominant mechanism for this technique, and the two-photon absorption coefficients of GaAs nanocrystals are estimated to be 5.6 and 21.1-37.0 cm/GW in the near-infrared and visible regions, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.