Abstract

We show that optical absorption in thin-film photovoltaic cells can be enhanced by inserting a tuned two-component aperiodic dielectric stack into the device structure. These coatings are a generalization and unification of the concepts of an anti-reflection coating used in solar cells and high-reflectivity distributed Bragg mirror used in resonant cavity-enhanced narrowband photodetectors. Optimized two-component coatings approach the physically realizable limit and optimally redistribute the spectral photon density-of-states to enhance the absorption of the active layer across its absorption spectrum. Specific designs for thin-film organic solar cells increase the photocurrent under AM1.5 illumination, averaged over all incident angles and polarizations, by up to 40%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.