Abstract

An optically tunable terahertz negative-refractive index metamaterial (NIM) is proposed. The NIMs are composed of two aluminum rings and two photosensitive ring-shaped silicon apertures coaxially coated on the both sides of Teflon substrate. The NIMS are also designed to realize wide incident angle, polarization insensitivity, and tunability. Similar to the real atom, the unit cell of NIMs is equivalent to the Teflon nucleus surrounded by top and bottom resonator electrons, which indicates that the equivalent-energy level of NIMs can be dynamically controlled by the resonator electrons, once the scale of substrate nucleus is fixed. Using the LC-circuit model, the dynamic control of the equivalent-energy level of NIMs is studied in detail. Simulation results indicate that the transmission of NIMs is tuned from lowpass to highpass when the conductivity of silicon is increased, and the corresponding phase at lower frequency can be continually tuned. Correspondingly, the negative refractive index of NIMs represents dynamically tunable property, and the tunable negative refraction is simulated by classical wedge prism model. Besides, the phase flow indicates that the direction of phase velocity of NIMs is negative for the single-negative index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call