Abstract

Silicon photonic integrated circuit foundries enable wafer-level fabrication of entire electro-optic systems-on-a-chip for applications ranging from datacommunication to lidar to chemical sensing. However, silicon’s indirect bandgap has so far prevented its use as an on-chip optical source for these systems. Here, we describe a fullyintegrated broadband silicon waveguide light source fabricated in a state-of-the-art 300-mm foundry. A reverse-biased p-i-n diode in a silicon waveguide emits broadband near-infrared optical radiation directly into the waveguide mode, resulting in nanowatts of guided optical power from a few milliamps of electrical current. We develop a one-dimensional Planck radiation model for intraband emission from hot carriers to theoretically describe the emission. The brightness of this radiation is demonstrated by using it for broadband characterization of photonic components including Mach-Zehnder interferometers and lattice filters, and for waveguide infrared absorption spectroscopy of liquid-phase analytes. This broadband silicon-based source can be directly integrated with waveguides and photodetectors with no change to existing foundry processes and is expected to find immediate application in optical systems-on-a-chip for metrology, spectroscopy, and sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.