Abstract

Yb3+ singly doped tellurite as‐prepared glasses and glass ceramics were synthesized by high‐temperature melt‐quenching method. The excitation and emission spectra have shown that there is an efficient near‐infrared (NIR) down‐shifting due to the sensitization of a novel Yb3+–O2− charge‐transfer (CT) band. The CT band in the present host is located at around 320 nm at room temperature, which is much lower than that in other oxide hosts reported before. The possible energy‐transfer mechanism from the Yb3+–O2− CT band to the 2F5/2 multiplet of Yb3+ ions is discussed in detail. The concentration quenching is not observed even when the Yb3+‐doped concentration is increased up to 40 mol%. The excitation of this strong broad CT band causes intense NIR emission of Yb3+:2F5/2→2F7/2 from 920 to 1120 nm, making the tellurite glasses suitable for efficient photovoltaic (PV) application as a spectral conversion material for the crystalline Si (c‐Si) solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.