Abstract

AbstractVehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR$\lt$2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call