Abstract

We present a high-optical-throughput infrared Mueller-matrix (MM) ellipsometer for the characterization of structured surfaces and ultrathin films. Its unprecedented sensitivity of about 10-4 in the normalized MM elements enables studies of the complex vibrational fingerprint of thin organic films under different ambient conditions. The ellipsometer acquires quadruples of MM elements within a few 10 s to min, rendering it interesting for process and in-line monitoring. It uses retractable achromatic retarders for increased signal to noise, and tandem wire-grid polarizers for improved polarization control. We demonstrate several scientific and industry-related applications. First, we determine the 3D profile of μm-sized trapezoidal SiO2 gratings on Si from azimuth-dependent MM measurements. Data modeling based on rigorous coupled-wave analysis is employed to quantify grating structure and orientation. We then monitor polymer relaxation processes with a time resolution of 47 s. Measurements of polymer films as thin as 7.7 nm illustrate the sensitivity of the device. We finally couple a liquid flow cell to the ellipsometer, highlighting the prospects for in situ infrared MM studies of thin films at solid-liquid interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call