Abstract

AbstractIn this paper, some nonplanar metagratings with multilevel asymmetric grooves are demonstrated to produce broadband and high‐efficiency anomalous reflection in wide‐incident‐angle range. First, bipartite metagrating with two asymmetric grooves per unit cell is proposed and optimized by machine learning. It can not only realize a high efficiency (≈88.8%) and large‐angle (≈70°) anomalous reflection under normal incidence, but also preserve the high performance over broad bandwidth (12.0–20.0 GHz) and wide‐incident‐angle range. Furthermore, to improve the large‐angle anomalous reflection at low frequencies, a tripartite metagrating is designed. The participation of more cavity modes makes the metagrating achieve the anomalous reflection with an efficiency greater than 90% over a broader bandwidth from ±1st Rayleigh anomalies to 20.0 GHz (even higher) and a wide range of incident angles from −70° to 70°, which is verified by the experimental measurement. Especially at an incident angle of 20°, the high‐efficiency anomalous reflection is sustained over an ultrabroad frequency range from 9.7 to 21.2 GHz, i.e., a fractional bandwidth of 74.4%. The excellent performance of anomalous reflection and relatively simple structures endow the asymmetric groove metagratings with abundant functions, such as ideal three‐channel retroreflector and abnormal reflector, and make them attractive in highly efficient and extreme wave manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.