Abstract
Solar energy is an eco-conscious substitute, for solar energy absorption and subsequent light-to-heat conversion, light-absorbing materials require broad-spectrum light absorption capabilities. Herein, we present the fabrication of broadband light-absorbing polypyrrole-carboxylated carbon nanotube membranes via a facile electrochemical deposition route. By manipulating electrochemical deposition time, the structure of the membranes was tailored, resulting in enhanced absorption, achieving over 98.95 % across the entire solar spectrum. The membranes demonstrated exemplary thermal efficacy and insensitivity to incident angles in photothermal conversion, the membranes facilitated a notable 12 °C temperature elevation within a simulated greenhouse compared to ambient conditions. Thus, these membranes exhibit considerable potential for widespread application in photothermal conversion and greenhouse technology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.