Abstract

The present study provides a comprehensive investigation of three suites of commonly used synthetic additives: phenolic and amino antioxidants and ultraviolet filters. The concentrations of 47 such compounds and their transformation products were measured in 20 atmospheric particle samples collected in Chicago, in 21 Canadian e-waste dust samples, in 32 Canadian and United States' residential dust samples, and in 10 sediment samples collected from the Chicago Sanitary and Ship Canal. Despite their large production volumes in the United States, environmental data on antioxidants and UV filters in North America is limited. These compounds were detected in all the samples, indicating their ubiquitous distribution in the North American environment. The most prevalent compounds were 2,6-di-t-butyl-p-benzoquinone, diphenylamine, 4,4'-di-t-octyl diphenylamine, 2,4-dihydroxybenzophenone, and 2-hydroxy-4-methoxybenzophenone. The e-waste dust contained significantly greater total concentrations of these compounds than the Canadian residential dust, while intermediate levels were detected in the United States residential dust. The sediment samples showed relatively high levels of N,N'-diphenylbenzidine, the source of which is unclear, and some benzotriazole UV filters. Daily intake rates by dust ingestion for these compounds ranged from 1-10 ng/(kg·day) for adults to 10-100 ng/(kg·day) for toddlers. Due to the wide distribution of these compounds in both the ambient and built environments, future research on their potential toxic effects on people and ecosystems is important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.