Abstract

A broad beam gas ion source based on low-pressure hollow cathode glow discharge is described. An axial magnetic filed produced by AlNiCo permanent magnets enhances the glow discharge in the ion source as a result of the magnetizing electrons between the hollow cathode and rod anode. The gas plasma is produced by magnetron hollow cathode glow discharge in the hollow cathode and a collimated broad ion beam is extracted by a four-grid accelerator system. A weak magnetic field of several millitesla is enough to ignite the magnetron glow discharge at pressure lower than 0.1Pa, thereby enabling stable and continuous high-current discharge to form the homogeneous plasma. A four-grid accelerator, which separates the extraction and acceleration of the ion beam, is used in this design to generate the high-energy ion beam from 10keV to 60keV at a working pressure of 10−4Torr. Although a higher gas pressure is necessary to maintain the low-pressure glow discharge when compared to hot filament discharge, the hollow cathode ion source is operational with reactive gases such as oxygen in the high-voltage continuous mode. A laterally uniform ion beam can be achieved by using the four-grid accelerator system. The effects of the rod anode length on the characteristics of the plasma discharge as well as ion beam extraction from the ion source are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.