Abstract
Broad-band near-infrared (NIR) transient absorption (TA) spectroscopy has been used for the first time to probe an all-carbon-bridged organometallic radical cation complex. The compound [{Ru(PPh3)2Cp}2(μ-C≡CC≡C)]+ ([1]+) was investigated in dichloromethane and acetonitrile solutions, using laser excitation at 700, 800, 900, and 1000 nm; these wavelengths span the NIR absorption band envelope. The resulting TA spectra were found to be independent of excitation wavelength and consist of an excited state absorption feature with a peak at ca. 1150 nm and the corresponding bleach signal of the ground-state NIR absorption band, which both decay to 0 over the 50 ps time window investigated. Data were analyzed globally and fit collectively for each of the four different excitation wavelengths, with the resulting best fit to a biexponential decay function indicating two processes with slightly different time scales of ca. 1.5 and ca. 9.0 ps involved in the relaxation to the ground state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.