Abstract

The authors discuss the development of ICs (integrated circuits) for a preamplifier, a gain-controllable amplifier, and main amplifiers with and without a three-way divider for multigigabit-per-second optical receivers using a single-ended parallel feedback circuit, two (inductor and capacitor) peaking techniques, and advanced GaAs process technology. An optical front-end circuit consisting of a GaAs preamplifier and an InGaAs p-i-n photodiode achieves a 3-dB bandwidth of 7 GHz and -12-dBm sensitivity at 10 Gb/s. Moreover, a gain-controllable amplifier obtains a maximum gain of 15 dB, a gain dynamic range of 25 dB, and a 3-dB bandwidth of 6.1 GHz by controlling the source bias of the common-source circuit. Gain, 3-dB bandwidth, and output power of the main amplifier with the three-way divider are 17.4 dB, 5.2 GHz, and 5 dBm, respectively. These ICs can be applied to optical receivers transmitting NRZ signals in excess of 7 Gb/s.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.