Abstract

An existing beam-on-elastic-foundation (BEF) model was used to determine the perpendicular-to-grain tensile stresses in timber members subjected to loading parallel to the grain by bolted connections. A set of relatively simple equations for the analysis of a Timoshenko beam of finite length on a Winkler foundation is given, and appropriate foundation stiffness values are discussed. While previous applications of the model have associated the foundation stiffness with the perpendicular-to-grain elastic strain in the timber, it is suggested that a fracture layer be introduced and the foundation stiffness be associated with the perpendicular-to-grain tensile strength and the mode I fracture energy of the wood. The latter estimation of the foundation stiffness, which leads to a so-called ‘quasi-non-linear fracture mechanics model’, has been applied with success to other problems where the BEF model has been used for the analysis of mode I fracture. An existing model for the analysis of the pure mode II fracture, which is also a quasi-non-linear fracture mechanics model based on similar assumptions as the proposed model for analysis of the mode I fracture, is reviewed. A simple way of handling mixed-mode fracture problems by means of the simple empirical interaction of the proposed pure mode I and pure mode II quasi-non-linear fracture mechanics models is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.