Abstract
In this article we investigate a new variant of Variable Neighborhood Search (VNS): Relaxation Guided Variable Neighborhood Search. It is based on the general VNS scheme and a new Variable Neighborhood Descent (VND) algorithm. The ordering of the neighborhood structures in this VND is determined dynamically by solving relaxations of them. The objective values of these relaxations are used as indicators for the potential gains of searching the corresponding neighborhoods. We tested this new approach on the well-studied multidimensional knapsack problem. Computational experiments show that our approach is beneficial to the search, improving the obtained results. The concept is, in principle, more generally applicable and seems to be promising for many other combinatorial optimization problems approached by VNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.