Abstract

The course timetabling problem is one of the most difficult combinatorial problems, it requires the assignment of a fixed number of subjects into a number of time slots minimizing the number of student conflicts. This article presents a comparison between state-of-the-art hyper-heuristics and a newly proposed iterated variable neighborhood descent algorithm when solving the course timetabling problem. Our formulation can be seen as an adaptive iterated local search algorithm that combines several move operators in the improvement stage. Our improvement stage not only uses several neighborhoods, but it also incorporates state-of-the-art reinforcement learning mechanisms to adaptively select them on the fly. Our approach substitutes the adaptive improvement stage by a variable neighborhood descent (VND) algorithm. VND is an ingredient of the more general variable neighborhood search (VNS), a powerful metaheuristic that systematically exploits the idea of neighborhood change. This leads to a more effective search process according course timetabling benchmark results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.