Abstract

Brillouin-zone (BZ) definition in a class of non-reciprocal Willis monatomic lattices (WMLs) is analytically quantified. It is shown that BZ boundaries only shift in response to non-reciprocity in one-dimensional WMLs, implying a constant BZ width, with asymmetric dispersion diagrams exhibiting unequal wavenumber ranges for forward and backward going waves. An extension to square WMLs is briefly discussed, analogously demonstrating the emergence of shifted and irregularly shaped BZs, which maintain constant areas regardless of non-reciprocity strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call