Abstract

This letter develops a simple approach of duct mode identification and reconstruction based on genetic algorithms, which can extend the azimuthal mode order range compared to the conventional method based on the (spatial) discrete Fourier transform. The underlying principle is reconstructing the dominant mode from the modal identification forward model through optimization by exploiting the sparsity of the mode amplitude vector. The performance is experimentally demonstrated for detections of one and two azimuthal modes under noisy conditions with nondominant modes. Overall, the proposed genetic-algorithm-based framework for solving acoustic inverse problems is beneficial to duct acoustic testing, particularly design evaluations of fan blades and acoustic liners for aeroengines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.