Abstract
For the first time, the adopted stochastic form of the perturbed Biswas-Milovic equation with cubic-quintic-septic law having spatio-temporal and chromatic dispersion in the presence of multiplicative white noise in Ito sense was presented and examined. The Biswas-Milovic equation ˆ models numerous physical phenomena occurring in optical fiber. We analyzed the optical soliton solutions of the stochastic model with the aid of a subversion of the new extended auxiliary equation method. Furthermore, we investigated the evaluation of the noise impacts and the effects of some model parameters on the dynamics of the generated soliton. Finally, graphical depictions of the derived soliton types were represented for some solution functions. The stochastic model and the derived results will contribute to the comprehension of the nonlinear dynamics of pulse propagation in optical fibers which has great importance for the advancement of optical communication engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.