Abstract

Abstract. Sublimation of snow particles during transport has been recognized as an important ablation process on the Antarctic ice sheet. The resulting increase in moisture content and cooling of the ambient air are thermodynamic negative feedbacks that both contribute to increase the relative humidity of the air, inhibiting further sublimation when saturation is reached. This self-limiting effect and the associated development of saturated near-surface air layers in drifting snow conditions have mainly been described through modelling studies and a few field observations. A set of meteorological data, including drifting snow mass fluxes and vertical profiles of relative humidity, collected at site D17 in coastal Adélie Land (East Antarctica) during 2013 is used to study the relationship between saturation of the near-surface atmosphere and the occurrence of drifting snow in a katabatic wind region that is among the most prone to snow transport by wind. Atmospheric moistening by the sublimation of the windborne snow particles generally results in a strong increase in relative humidity with the magnitude of drifting snow and a decrease in its vertical gradient, suggesting that windborne-snow sublimation can be an important contributor to the local near-surface moisture budget. Despite a high incidence of drifting snow at the measurement location (60.1 % of the time), saturation, when attained, is however most often limited to a thin air layer below 1 m above ground. The development of a near-surface saturated air layer up to the highest measurement level of 5.5 m is observed in only 8.2 % of the drifting snow occurrences or 6.3 % of the time and mainly occurs in strong wind speed and drift conditions. This relatively rare occurrence of ambient saturation is explained by the likely existence of moisture-removal mechanisms inherent to the katabatic and turbulent nature of the boundary-layer flow that weaken the negative feedback of windborne-snow sublimation. Such mechanisms, potentially quite active in katabatic-generated windborne-snow layers all over Antarctica, may be very important in understanding the surface mass and atmospheric moisture budgets of the ice sheet by enhancing windborne-snow sublimation.

Highlights

  • Drifting and blowing snow, respectively defined as an ensemble of snow particles raised from the ground at a height below and above 2 m, occur frequently over windswept areas of Antarctica

  • Meteorological profiles and drifting snow mass fluxes collected continuously during 2013 at site D17 in coastal Adélie Land have been analysed conjointly to characterize the moistening of the near-surface atmosphere during drifting snow occurrences

  • In snow transport conditions occurring 60.1 % of the time, relative humidity increases and its vertical gradient diminishes with the magnitude of drifting snow, as a result of a major source of moisture from windborne-snow sublimation in the near-surface atmospheric layer

Read more

Summary

Introduction

Respectively defined as an ensemble of snow particles raised from the ground at a height below and above 2 m, occur frequently over windswept areas of Antarctica. Continent-wide modelling studies suggest that erosion through divergence of drifting and blowing snow transport and concurrent sublimation of particles during transport currently represent important ablation processes on the ice sheet The particles transported through saltation and suspension during drifting and blowing snow occurrences interact with the ambient air and influence the thermodynamic structure of the low-level atmosphere. Mass loss experienced by windborne snow particles through sublimation releases water vapour into and removes heat from the surrounding air. Both processes contribute to an increase in relative humidity of the air in an inherently self-limiting fashion (Déry et al, 1998; Mann et al, 2000; Bintanja, 2000), even-

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.