Abstract
Vertical Bridgman crystal growth of concentrated Ga 1 - x In x Sb alloys is in general difficult because of large chemical segregations which occur during the solidification process. From experimental works and numerical simulations, it is found that the melt convection is damped by the accumulation of the heavy InSb solute rejected at the interface. This leads to a significant increase of the interface curvature and radial segregations in the case of GaInSb crystals (10% and 20% In concentration). By using alternating magnetic fields produced by a coil placed around the crucible, the level of the convection can be increased in order to obtain a good mixing of the solute near the solid–liquid interface and to avoid the large chemical segregations. Numerical simulation is used in order to compute the magnetic field parameters, and for the optimization of the coil dimensions and position related to the solid–liquid interface. In order to solve simultaneously the electromagnetic and thermo-hydrodynamic problem, including species transport, a self-developed module which is able to solve the magnetic induction equation, has been introduced in the FIDAP commercial code. From the simulation, it is found that the coil position related to the interface has a significant influence on the electromagnetically induced flow. Based on these simulations, an optimal Bridgman configuration equipped with an electromagnetic coil is proposed in order to mix the solute near the interface and to avoid the excessive increase of chemical segregations and interface curvatures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have