Abstract
Many of the important phases observed in twisted transition metal dichalcogenide homobilayers are driven by short-range interactions, which should be captured by a local tight binding description since no Wannier obstruction exists for these systems. Yet, published theoretical descriptions have been mutually inconsistent, with honeycomb lattice tight binding models adopted for some twist angles, triangular lattice models adopted for others, and with tight binding models forsaken in favor of band projected continuum models in many numerical simulations. Here, we derive and study a minimal model containing both honeycomb orbitals and a triangular site that represents the band physics across a wide range of twist angles. The model provides a natural basis to study the interplay of interaction and topology in these heterostructures. It elucidates from generic features of the bilayer the sequence of Chern numbers occurring as twist angle is varied, and the microscopic origin of the magic angle at which flat-band physics occurs. At integer filling, the model successfully captures the Chern ferromagnetic and van Hove-driven antiferromagnetic insulators experimentally observed for small and large angles, respectively, and allows a straightforward calculation of the magnetoelectric properties of the system. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.