Abstract

Neuronal regeneration in the central nervous system (CNS) is an important field of research with relevance to all types of neuronal injuries, including neurodegenerative diseases. The glial scar is a result of the astrocyte response to CNS injury. It is made up of many components creating a complex environment in which astrocytes play various key roles. The glial scar is heterogeneous, diverse and its composition depends upon the injury type and location. The heterogeneity of the glial scar observed in different situations of CNS damage and the consequent implications for axon regeneration have not been reviewed in depth. The gap in this knowledge will be addressed in this review which will also focus on our current understanding of central axonal regeneration and the molecular mechanisms involved. The multifactorial context of CNS regeneration is discussed, and we review newly identified roles for components previously thought to solely play an inhibitory role in central regeneration: astrocytes and p75NTR and discuss their potential and relevance for deciding therapeutic interventions. The article ends with a comprehensive review of promising new therapeutic targets identified for axonal regeneration in CNS and a discussion of novel ways of looking at therapeutic interventions for several brain diseases and injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.