Abstract

Conventional fault-tolerance approaches for Networks-on-Chip (NoCs) cannot be applied to high dependability systems due to their different goals and constraints. These systems impose strict integrity, resilience and real-time requirements. In order to meet these requirements, all possible effects of random hardware errors must be taken into account, silent data corruption must be prevented and the resulting system must be predictable in the presence of errors. In this paper, we present a wormhole-switched NoC with virtual channels for high dependability systems hardened against soft errors. The NoC is developed based on results of a Failure Mode and Effects Analysis. It efficiently handles errors in different network layers and operates with formal guarantees. Our experimental evaluation, including an industrial avionics use case, shows that the network is able to achieve predictable behavior even in aggressive environments with very high error rates while presenting competitive overheads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.