Abstract

Characterizing quantum correlations in terms of information-theoretic principles is a popular chapter of quantum foundations. Traditionally, the principles adopted for this scope have been expressed in terms of conditional probability distributions, specifying the probability that a black box produces a certain output upon receiving a certain input. This framework is known as device-independent. Another major chapter of quantum foundations is the information-theoretic characterization of quantum theory, with its sets of states and measurements, and with its allowed dynamics. The different frameworks adopted for this scope are known under the umbrella term general probabilistic theories. With only a few exceptions, the two programmes on characterizing quantum correlations and characterizing quantum theory have so far proceeded on separate tracks, each one developing its own methods and its own agenda. This paper aims at bridging the gap, by comparing the two frameworks and illustrating how the two programmes can benefit each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.