Abstract
General probabilistic theories provide the most general mathematical framework for the theory of probability in an operationally natural manner and generalize classical and quantum theories. In this article, we study state discrimination problems in general probabilistic theories using a Bayesian strategy. After reformulation of the theories with mathematical rigor, we first prove that an optimal observable to discriminate any (finite) number of states always exists in the most general setting. Next, we revisit our recently proposed geometric approach for the problem and show that for two-state discrimination, this approach is indeed effective in arbitrary dimensional cases. Moreover, our method reveals an operational meaning of Gudder’s “intrinsic metric” by means of the optimal success probability, which turns out to be a generalization of the trace distance for quantum systems. As its by-product, an information disturbance theorem in general probabilistic theories is derived, generalizing its well known quantum version.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.