Abstract
Devonian stem tetrapods are thought to have used ‘crutching’ on land, a belly-dragging form of synchronous forelimb action-powered locomotion. During the Early Carboniferous, early tetrapods underwent rapid radiation, and the terrestrial locomotion of crown-group node tetrapods is believed to have been hindlimb-powered and ‘raised’, involving symmetrical gaits similar to those used by modern salamanders. The fossil record over this period of evolutionary transition is remarkably poor (Romer’s Gap), but we hypothesize a phase of belly-dragging sprawling locomotion combined with symmetrical gaits. Since belly-dragging sprawling locomotion has differing functional demands from ‘raised’ sprawling locomotion, we studied the limb mechanics of the extant belly-dragging blue-tongued skink. We used X-ray reconstruction of moving morphology to quantify the three-dimensional kinematic components, and simultaneously recorded single limb substrate reaction forces (SRF) in order to calculate SRF moment arms and the external moments acting on the proximal limb joints. In the hindlimbs, stylopodal long-axis rotation is more emphasized than in the forelimbs, and much greater vertical and propulsive forces are exerted. The SRF moment arm acting on the shoulder is at a local minimum at the instant of peak force. The hindlimbs display patterns that more closely resemble ‘raised’ sprawling species. External moment at the shoulder of the skink is smaller than in ‘raised’ sprawlers. We propose an evolutionary scenario in which the locomotor mechanics of belly-dragging early tetrapods were gradually modified towards hindlimb-powered, raised terrestrial locomotion with symmetrical gait. In accordance with the view that limb evolution was an exaptation for terrestrial locomotion, the kinematic pattern of the limbs for the generation of propulsion preceded, in our scenario, the evolution of permanent body weight support.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.