Abstract
In cell signaling, the activation of a surface receptor leads to a cascade of intracellular biochemical events. Many of these occur near the inner plasma membrane surface. However, accurate rate parameters for these initial steps in models of signaling are rarely available because membrane-tethered reaction kinetics are difficult to experimentally measure. Here, we use a highly coarse-grained molecular simulator to model the kinetics of reactions between binding sites that are tethered to a membrane. We can fit these simulation outputs to 2-dimensional rate laws to obtain rate constants that can be used to build complex models of cell signaling. These rate constants can also be compared to understand the key biophysical features controlling the kinetics of bimolecular membrane reactions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have