Abstract

In bridge weigh-in-motion (BWIM), dynamic bridge response is measured during traffic and used to identify overloaded vehicles. Most past studies of BWIM use mechanics-based algorithms to estimate axle weights. This research instead investigates deep learning, specifically the recurrent neural network (RNN), toward BWIM. In order to acquire the large data volume to train a RNN network that uses bridge response to estimate axle weights, a finite element bridge model is built through the commercial software package LS-DYNA. To mimic everyday traffic scenarios, tens of thousands of randomized vehicle formations are simulated, with different combinations of vehicle types, spacings, speeds, axle weights, axle distances, etc. Dynamic response from each of the randomized traffic scenarios is recorded for training the RNN. In this paper we propose a 3-stage Bidirectional RNN toward BWIM. Long short-term memory (LSTM) and attention mechanism are embedded in the BRNN to further improve the network performance. Additional test data indicates that the BRNN network achieves high accuracy in estimating axle weights, in comparison with a conventional moving force identification (MFI) method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call