Abstract

Dynamic cable-tension is an important bridge-health indicator. However, it is difficult to be measured precisely and efficiently. A remote bridge dynamic cable-tension measurement method is proposed. It uses an interferometric radar sensor, a time-frequency analysis technique, and a tension estimation approach based on a string-vibration-equation. One radar can measure the displacements of multiple cables aligned on one side of a bridge, at the same time. By solving the string vibration equation, each cable-tension is calculated from its fundamental frequency, which is obtained by time-frequency analyzing a short section of the cable’s whole displacement vector in an overlapped-piecewise manner. An adaptive amplitude and phase estimation (APES) algorithm is used to solve the frequency resolution deterioration problem due to the short duration. Simulations and field experiments with a K band interferometric radar validate that the proposed method is superior to traditional cable-tension measurements in terms of precision, robustness, and efficiency. The proposed method is of great application value in measuring and monitoring large cable-stayed bridges and cable-suspended bridges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.