Abstract

The amplitude and phase estimation (APES) algorithm is widely used in modern spectral analysis. Compared with conventional Fourier transform (FFT), APES results in lower sidelobes and narrower spectral peaks. However, in synthetic aperture radar (SAR) imaging with large scene, without parallel computation, it is difficult to apply APES directly to super-resolution radar image processing due to its great amount of calculation. In this paper, a procedure is proposed to achieve target extraction and parallel computing of APES for super-resolution SAR imaging. Numerical experimental are carried out on Tesla K40C with 745 MHz GPU clock rate and 2880 CUDA cores. Results of SAR image with GPU parallel computing show that the parallel APES is remarkably more efficient than that of CPU-based with the same super-resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.