Abstract

Some arbovirus infections, especially dengue, have increased rapidly over the last few decades in Sri Lanka. Prevalence and distribution of different mosquito species have been limitedly documented, which remains grossly inadequate in providing evidence for potential health risks. In this study, the diversity and species composition of mosquitoes in four selected districts in Sri Lanka (Kurunegala, Gampaha, Kegalle, and Kandy) were investigated. Entomological surveys were conducted from a total of 160 temporary and permanent mosquito breeding habitats identified in the study area from June 2017 to October 2018. Mosquito immature stages were sampled using standard dipping, siphoning, or pipetting methods and identified up to the species level. Percentage relative abundance and habitat characteristics such as species richness, dominance, and Shannon–Weiner diversity were calculated for each surveyed habitat type. Associations between co-occurring species were estimated by Hulbert's coefficient of interspecific association (C8). A total of 4663 mosquito larvae belonging to seven genera and fifteen species of mosquitoes were collected. The relative distribution of mosquito species differed significantly among the four studied districts (X2 = 143.248; df = 33; P < 0.001). According to Kruskal–Wallis statistics (P < 0.05 at 95% of significance), all diversity indices for immature stages of medically important mosquitoes varied significantly across different breeding sites. Paddy fields had the significantly highest species richness of 4.0 ± 2.82. The coefficients of interspecific association among all the recorded medically important vector mosquitoes were found negative during the present study. The findings of the current study would be useful to identify the entomological potential for disease transmission and facilitate the implementation of appropriate vector control interventions. This would ultimately provide an avenue to improve the personal skills of health staff rather than limiting their knowledge to specified disease vectors, under which the control program is concerned.

Highlights

  • Vector-borne diseases have emerged as a serious public health concern, especially in tropical countries including Sri Lanka

  • Sri Lanka has been suffering from mosquito-borne diseases since ancient times with the high prevalence of malaria, filariasis, and Japanese encephalitis (JE) [1]

  • A total of 4663 mosquito larvae belonging to fifteen species under seven genera were collected from natural and artificial water-holding macro- and microhabitats located in study sites during the sampling period (Table 2). e highest number of mosquito immature stages (n 1554) were collected from Kurunegala district

Read more

Summary

Introduction

Vector-borne diseases have emerged as a serious public health concern, especially in tropical countries including Sri Lanka. Growing populations of vector mosquitoes due to unplanned urbanization, industrialization, and excessive population growth coupled with rural to urban migration have been identified as the major reasons for elevated dengue incidence in many countries including Sri Lanka [4]. Ey exploit almost all types of lentic aquatic habitats for their breeding [6].On the other hand, rice fields and marshy land habitats in Sri Lanka have significantly influenced the distribution of mosquito populations, including vector mosquitoes, thereby facilitating disease transmission [7]. Larvae of Culex and Anopheles species are found in rice fields, nursery paddy beds, and large stagnant water bodies in Sri Lanka [8]. Ecological factors and physicochemical properties of water in the breeding habitat significantly affect the mosquito density and abundance [9]. e size, type, and nature of water body are found to be influensive in selecting the oviposition sites by mosquitoes [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call