Abstract

The breathing zone of an individual indoors is usually defined as a finite region steadily formed in front of a face. Assuming the steady formation of the breathing zone, we propose a procedure for quantitatively identifying a breathing zone formed in front of a human face in the transient condition. This assumption is reasonable considering that the ventilation time scale of human respiration is sufficiently short compared to the ventilation time scale of a room. We used steady-state computational fluid dynamics (CFD) and a computationally simulated person (CSP). We present the probabilistic size of the breathing zone for various postures and breathing conditions. By analyzing unsteady inhalation and exhalation airflow characteristics via a CSP with a respiratory system, we also estimated the direct re-inhalation rate of the exhaled air. The results can be used for developing methods to control the long-term and low-contaminant concentration exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.