Abstract

A theoretical approach to study breathing vibrations of cylindrical shells with horizontal axis, partially filled with liquid, is delineated and the results of some modal tests conducted on an industrially-manufactured tank are presented and discussed. The good agreement between theoretical and experimental results is preliminarily verified in the case of both an empty and completely full shell, in order to confirm that it is possible to apply the theoretical approach to real structures. The modal properties of a partially-filled shell as a function of liquid level are then experimentally studied, the mode shapes are compared using the Modal Assurance Criterium and a qualitative explanation of the dynamic behavior is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.