Abstract

In the current analysis vibration characteristics of a cylindrical shell composed of three layers are examined. Vibration of cylindrical shells is accomplished for their involvement in various areas of engineering and technology. Shell vibration behavior depends upon on different geometrical material parameters and material parameters. They provide the maximum stability of a physical system. There is graduation distribution of constituent materials in functionally graded materials and is controlled by polynomial, exponential and trigonometric volume exponent fraction laws. In the present study a cylindrical shell is composed of three layers whereas the middle layer consists of functionally graded material and the extreme layer are of isotropic nature. Material composition of the FG layer is governed by polynomial, exponential and trigonometric volume fraction exponent laws. Impact of these laws is examined on shell vibration frequencies for different physical parameters. Love’s thin shell theory is adopted for shell motion equations. The vibration of cylindrical shells with FGM will be expressed by using the Raleigh-Ritz technique in this method. Three volume fraction laws are used to define the middle layer of tri-layer cylindrical shells. The Rayleigh-Ritz technique is applied to form the shell frequency equation which is solved by MATLAB software. The validity and accuracy of this method is investigated for a number of comparisons of numerical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.