Abstract

Under investigation in this paper are the inhomogeneous nonlinear Schrödinger Maxwell–Bloch (INLS-MB) equations which model the propagation of optical waves in an inhomogeneous nonlinear light guide doped with two-level resonant atoms. Higher-order nonautonomous breather as well as rogue wave solutions in terms of the determinants for the INLS-MB equations are presented via the n-fold variable-coefficient modified Darboux transformation. The interactions among two nonautonomous breathers are graphically discussed, including the fundamental breather, bound breather, two-breather compression and two-breather evolution, etc. Moreover, several patterns of the higher-order rogue waves are also exhibited, such as the square rogue wave, two- and three-order periodic rogue waves, periodic fission and fusion, two-order stationary rogue waves, and recurrence of the two-order rogue waves. The character of the trajectory of the two-order periodic rogue wave is analyzed. Additionally, a novel type of interaction, namely, the collision between the breather and long-lived rogue waves, is found to be elastic. Our results could be useful for controlling the nonautonomous optical breathers and rogue waves in the inhomogeneous erbium doped fiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.