Abstract

Superhydrophobic fabrics have recently attracted extensive interest not only in the fields of water-repellent clothing but also for the emerging functional fabrics due to their intrinsic flexibility and excellent stability. In this work, we proposed a simple, cost-effective, and environmentally friendly method to fabricate superhydrophobic fabrics with a broad application scope for textiles of different apertures. The flexible, breathable, and superhydrophobic fabric was realized via a three-step process, including polydimethylsiloxane (PDMS) encapsulation, in situ microcilia array formation, and silica nanoparticle decoration. With an adhesive PDMS layer and additive NdFeB particles, the hierarchical structures can tightly attach to the fabric substrate to provide robustness and durability. Specifically, the optimization of microcilia architecture was achieved via tuning the composite mass ratios so that suitable morphologies can be produced for robust nonwetting behavior. The superhydrophobic fabrics possess a contact angle and sliding angle of ∼155 and ∼3°, respectively, with excellent durability against 650 cycles' periodic mechanical abrasion, 130 cycles' tape-peeling test, washing evaluation, and chemical corrosions. Furthermore, the superhydrophobic fabric shows outstanding breathability and flexibility to be adaptive to surfaces with curvature or irregular shapes. The presented superhydrophobic strategy was considered to be feasible for multiple fabric substrates, revealing the broad application potential for fields of healthcare production, outdoor goods, catering industry, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.