Abstract

BackgroundEpithelial to mesenchymal transition (EMT), implicated as a mechanism for tumor dissemination, is marked by loss of E-cadherin, disruption of cell adhesion, and induction of cell motility and invasion. In most intraductal breast carcinomas E-cadherin is regulated epigenetically via methylation of the promoter. E-cadherin expression is therefore dynamic and open to modulation by the microenvironment. In addition, it has been observed that metastatic foci commonly appear more differentiated than the primary tumor, suggesting that cancer cells may further undergo a mesenchymal to epithelial reverting transition (MErT) in the secondary organ environment following the EMT that allows for escape.ResultsWe first examined E-cadherin expression in primary breast tumors and their corresponding metastases to liver, lung and brain and discovered that 62% (10/16) of cases showed increased E-cadherin expression in the metastases compared to the primaries. These observations led to the question of whether the positive metastatic foci arose from expansion of E-cadherin-positive cells or from MErT of originally E-cadherin-negative disseminated cells. Thus, we aimed to determine whether it was possible for the mesenchymal-like MDA-MB-231 breast cancer cells to undergo an MErT through the re-expression of E-cadherin, either through exogenous introduction or induction by the microenvironment. Ectopic expression of full-length E-cadherin in MDA-MB-231 cells resulted in a morphological and functional reversion of the epithelial phenotype, with even just the cytosolic domain of E-cadherin yielding a partial phenotype. Introduction of MDA-MB-231 cells or primary explants into a secondary organ environment simulated by a hepatocyte coculture system induced E-cadherin re-expression through passive loss of methylation of the promoter. Furthermore, detection of E-cadherin-positive metastatic foci following the spontaneous metastasis of MDA-MB-231 cells injected into the mammary fat pad of mice suggests that this re-expression is functional.ConclusionsOur clinical observations and experimental data indicate that the secondary organ microenvironment can induce the re-expression of E-cadherin and consequently MErT. This phenotypic change is reflected in altered cell behavior and thus may be a critical step in cell survival at metastatic sites.

Highlights

  • Breast cancer is the most frequently diagnosed cancer in women, and it is the second leading cause of cancer death in women of all ages [1]

  • E-cadherin is expressed in distant metastases of Ecadherin-negative primary tumors Loss of E-cadherin expression in the primary tumor is correlated with poor prognosis and survival [14,18]

  • A few studies have examined E-cadherin expression in the primary tumor and distant metastases, but the cases analyzed in these studies included metastases to lymph nodes or uncommon sites of breast cancer metastasis [15]

Read more

Summary

Introduction

Breast cancer is the most frequently diagnosed cancer in women, and it is the second leading cause of cancer death in women of all ages [1]. Intraductal carcinoma, which originates from the epithelial cells lining the mammary ducts, is the most common type of breast cancer. We have hypothesized that EMT is reversible and that a reversion back towards the epithelial phenotype may occur at the secondary metastatic site (MErT). A similar reversion occurs in development when neural crest cells undergo a transient EMT followed by a permanent MET to generate tissues such as kidney epithelia [5]. The phenotypic plasticity observed in these cases is unlikely to be generated by the acquisition of permanent genetic insults, suggesting that the microenvironment is capable of inducing epigenetic changes. It has been observed that metastatic foci commonly appear more differentiated than the primary tumor, suggesting that cancer cells may further undergo a mesenchymal to epithelial reverting transition (MErT) in the secondary organ environment following the EMT that allows for escape

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.