Abstract
To perform a radiogenomic analysis of women with breast cancer to study the multiscale relationships among quantitative computer vision-extracted dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging phenotypes, early metastasis, and long noncoding RNA (lncRNA) expression determined by means of high-resolution next-generation RNA sequencing. In this institutional review board-approved study, an automated image analysis platform extracted 47 computational quantitative features from DCE MR imaging data in a training set (n = 19) to screen for MR imaging biomarkers indicative of poor metastasis-free survival (MFS). The lncRNA molecular landscape of the candidate feature was defined by using an RNA sequencing-specific negative binomial distribution differential expression analysis. Then, this radiogenomic biomarker was applied prospectively to a validation set (n = 42) to allow prediction of MFS and lncRNA expression by using quantitative polymerase chain reaction analysis. The quantitative MR imaging feature, enhancing rim fraction score, was predictive of MFS in the training set (P = .007). RNA sequencing analysis yielded an average of 55.7 × 10(6) reads per sample and identified 14 880 lncRNAs from a background of 189 883 transcripts per sample. Radiogenomic analysis allowed identification of three previously uncharacterized and five named lncRNAs significantly associated with high enhancing rim fraction, including Homeobox transcript antisense intergenic RNA (HOTAIR) (P < .05), a known predictor of poor MFS in patients with breast cancer. Independent validation confirmed the association of the enhancing rim fraction phenotype with both MFS (P = .002) and expression of four of the top five differentially expressed lncRNAs (P < .05), including HOTAIR. The enhancing rim fraction score, a quantitative DCE MR imaging lncRNA radiogenomic biomarker, is associated with early metastasis and expression of the known predictor of metastatic progression, HOTAIR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.