Abstract
Breast cancer is one of the primary causes of death among the women worldwide, and the accurate diagnosis is one of the most significant steps in breast cancer treatment. Data mining techniques can support doctors in diagnosis decision-making process. In this paper, we present different data mining techniques for diagnosis of breast cancer. Two different Wisconsin Breast Cancer datasets have been used to evaluate the system proposed in this study. The proposed system has two stages. In the first stage, in order to eliminate insignificant features, genetic algorithms are used for extraction of informative and significant features. This process reduces the computational complexity and speed up the data mining process. In the second stage, several data mining techniques are employed to make a decision for two different categories of subjects with or without breast cancer. Different individual and multiple classifier systems were used in the second stage in order to construct accurate system for breast cancer classification. The performance of the methods is evaluated using classification accuracy, area under receiver operating characteristic curves and F-measure. Results obtained with the Rotation Forest model with GA-based 14 features show the highest classification accuracy (99.48 %), and when compared with the previous works, the proposed approach reveals the enhancement in performances. Results obtained in this study have potential to open new opportunities in diagnosis of breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.