Abstract

An experimental and theoretical study of the deformation and break-up process of rings, formed by magnetic microspheres, under the application of an external magnetic field is reported in this Letter. When the external magnetic field is applied parallel to the plane of the rings, we found that the break-up process has three different outcomes depending on the way of application and time history of the external field: (a) deformation into a compact set of dipoles with a triangular lattice structure, (b) opening into a single chain, and (c) break-up into two chains with various relative sizes. A thorough theoretical investigation of the break-up process has been carried out based on computer simulations, taking into account solely the dipole–dipole and dipole–external field interactions, without thermal noise. The experimental results and the simulations are in good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.